4 Channel 4-20mA/0-10V Industrial Media Converter

SYSTEM INSTALLATION INFORMATION

Description

This Fiber Optic Media converter transmits 4-20mA or 0-10VDC signals over fiber cable. Offers high end specifications: 78,000 samples a second, 16 bit signal resolution, and less than 0.1% source signal variance.

Compatible with most PLC’s, Sensors (2, 3, or 4 wire), and other types of equipment where a precise current or voltage measurement must be taken and transmitted over fiber. The system comprises of a transmitter (Analog Input) and a receiver (Analog Output). Each device is enclosed in a compact DIN and wall mountable housing.

This compact and rugged system provides convenient and easy to read LEDs, supports both single-mode and multimode fiber applications, and includes an alarm on either side monitoring system power and fiber health. Designed to operate over an extreme temperature range, providing reliability in harsh environments. It was designed and is made in the U.S.A and is covered by our Limited Lifetime Warranty.

4~20mA System

Extends up to 4 separate analog 4-20mA current signals. 4-20mA signals are less susceptible to noise interference, can easily detect an open circuit, and current measurement remains the same in any point of the signal path.

0~10VDC System

Extends up to 4 separate analog 0-10 Volt signals. Transport analog voltage signals over long distances without compromising accuracy and reliability.

Standard Features

Convenient LED status indicators
Single and dual fiber models available
Available with ST or SC connectors, single or multi-mode fiber
Transmit 0-10VDC or 4-20mA signals over Fiber
78,000 Samples a Second, 12.8µs Update Rate
16 Bit Signal Resolution
99.9% Accuracy or Better
Pluggable terminal blocks
Alarm contact for status monitoring
Environmentally rugged with wide operating temp. -40°F to +158°F (-40°C to +70°C)
Standard T35 DIN rail or wall mount applications
Limited Lifetime Warranty

Designed and Made in the U.S.A.
General Safety Practices

The equipment discussed in this document may require tools designed for the purpose being described. RLH recommends that service personnel be familiar with the correct handling and use of any installation equipment used, and follow all safety precautions including the use of protective personal equipment as required.

Caution - Severe Shock Hazard

- Never install during a lightning storm or where unsafe high voltages are present.
- Use caution when handling copper wiring and follow appropriate safety regulations.

Guidelines for Handling Terminated Fiber Cable

- Do not bend fiber cable sharply. Use gradual and smooth bends to avoid damaging glass fiber.
- Keep dust caps on fiber optic connectors at all times when disconnected.
- Do not remove dust caps from unused fiber.
- Keep fiber ends and fiber connectors clean and free from dust, dirt and debris. Contamination will cause signal loss.
- Do not touch fiber ends.
- Store excess fiber on housing spools or fiber spools at site

Acronyms

Commonly used acronyms, terminology, and abbreviations.

<table>
<thead>
<tr>
<th>Acronym/Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Transmit</td>
</tr>
<tr>
<td>RX</td>
<td>Receive</td>
</tr>
<tr>
<td>PWR</td>
<td>Power</td>
</tr>
<tr>
<td>NC</td>
<td>Normally Closed</td>
</tr>
<tr>
<td>COM</td>
<td>Common</td>
</tr>
<tr>
<td>NO</td>
<td>Normally Open</td>
</tr>
<tr>
<td>Sinking</td>
<td>Does not provide voltage or current</td>
</tr>
<tr>
<td>Sourcing</td>
<td>Providing Voltage or Current</td>
</tr>
</tbody>
</table>
Applications

By utilizing fiber optic cable, the 4–20mA / 0–10VDC system provides absolute electrical isolation between both ends of the control system. It provides immunity to EMI/RF interference, ground loops, and high voltage surges from lightning or ground faults, and is ideal in electrically noisy environments such as near large power sources, electrical motors, and radio communications equipment. Fiber optic cable also allows for a signal transmission of up to 120km over fiber optic cable from the source signals location.

Control equipment in high voltage areas can be at risk due to Ground Potential Rise (GPR). A copper network cable referenced to a remote ground can become a path for high voltages during a ground fault. Placement of all-dielectric fiber optic cable (instead of copper) completely eliminates the presence of a remote ground, which dramatically increases signal accuracy, reliability of equipment, and safety of personnel.

System Diagram

4-20mA System - 2-Wire Transmitter

Connecting a 2-wire Transmitter to a RLH Transmitter (ADH-420TX-XX-1 or ADH-010TX-XX-1). The RLH transmitter is always a sinking input, expecting the source voltage or current to be supplied by the remote device. In this example, the 2-Wire Transmitter has 24VDC loop voltage provided by a separate power supply. Below is a typical configuration for loop powered sensors (Flow, Temperature, Pressure, etc…).

Note: Use common terminal when connecting RLH receiver to differential inputs.
4-20mA System - 3-Wire Transmitter

Connecting a 3-Wire Transmitter to a RLH Transmitter (ADH-420TX-XX-1 or ADH-010TX-XX-1). The RLH transmitter is always a sinking input, expecting the source voltage or current to be supplied by the remote device. The common terminal should be used when multiple 3-Wire transmitters are connected to the RLH Fiber Link Transmitter. Below is a typical configuration for 3-wire transmitters.

![Diagram of 3-Wire Transmitter Configuration](image)

Note: Use common terminal when connecting RLH receiver to differential inputs

4-20mA System - 4-Wire Transmitter

Connecting a 4-Wire 4–20mA Transmitter to a RLH Transmitter (ADH-420TX-XX-1 or ADH-010TX-XX-1). The RLH transmitter is always a sinking input, expecting the source voltage or current to be supplied by the remote device. Below is a typical configuration for a 4-Wire transmitter.

![Diagram of 4-Wire Transmitter Configuration](image)

Note: Use common terminal when connecting RLH receiver to differential inputs
Installation

Prior to installation:
• Check for shipping damage.
• Check the contents to ensure correct model and fiber type.
• Have a clean, dry installation environment ready.
• Ensure that the fiber type at the site matches the system type.

Required for installation:
• 24VDC power source at both installation sites.
• DIN rail for mounting, or wall space for wall mounting.
• Multimeter

Measure the DC voltage of the source power to ensure that it is 24VDC. All electrical and fiber optic connections are made directly onto the unit.

Front Panel

The front panel contains the input or output contact terminals, LED’s, and the TX or RX fiber port.
DIN rail mounting
The DIN clip for mounting the system is mounted onto the rear panel. Hook the DIN clip on the top flange of the DIN rail and rotate to the locked position to install. To remove, push up to depress the spring latch and rotate off the DIN rail.

Wall mounting
The system can be easily wall mounted by attaching the provided wall mount ears and hardware. Attach the wall mount ears by following the instructions below.
Connect Fiber Optic Cable
Connect fiber to the transmit and receive optical connectors on the front of the units. Fiber cable should always be routed loosely avoiding tight bends.

- For dual fiber systems connect the TX fiber port to the RX fiber port at the remote side.
- For single fiber systems ensure Side A is connected to Side B. Two side A devices will not pair together, the same applies to side B. Single fiber systems will always have a Side A & B.
- Once the system is properly connected the Link LED, on the receiver unit, should turn ON.

Connect Copper Wire Pairs
The wire pairs from the sensor or controller equipment connect to the green screw-down terminals on the transmitter and receiver modules labeled Input and Output.

- Observe polarity on the input and output connectors.
- The contact terminals may be removed and accept wire sizes 16–26 AWG.
- Fully seat the terminal block back into the connector before operating the system.
- When using 3-Wire devices ensure common terminals are connected.

Receiver Alarm Contact Wiring
The contact will alarm when the fiber link is down or a power failure.

- Use the NO or NC contact positions as required.
- The alarm terminal block may be removed and accept wire sizes 16–26 AWG.
- Fully seat the terminal block back into the connector before operating the system.
- An alarm terminal is present on both the Transmitter and Receiver.

Connect Power
Ensure power supply is OFF prior to wiring the system. Each device has redundant power input terminals. Connect a 24VDC power supply to the screw-down terminals labeled PWR1 or PWR2 located on the top of the unit. Either pair of terminals or both may be used to power the device.

- Requires one (1) 24VDC power supply on each side of the system.
- Fully seat the terminal block back into the connector before operating the system.

Note: Power input is NOT polarity sensitive.
Troubleshooting

If trouble is encountered, verify all copper and fiber connections, signal and voltage levels. If the alarm is on, check the fiber cable and connections, or the other unit's power source and connections. If trouble persists, contact RLH Industries, Inc. technical support department:

Main Number: 800-877-1672 (6 am to 6 pm PST),
Direct to Technical Support: (855) 754-2497
General Specifications

<table>
<thead>
<tr>
<th>Connector Types</th>
<th>ST or SC</th>
</tr>
</thead>
</table>
| Transmission method | **Multimode:** 1310nm
Single-mode: 1310nm/1550nm |
| Maximum Fiber Attenuation / Distance | **Dual Fiber**
Multimode (50μm & 62.5/125μm): 1.25 mi./2 km range
Single-mode (9/125μm): 12.4 mi./20 km range
37 mi./60 km range
74 mi./120 km range
Single Fiber, Bi-directional
Single-mode (9/125μm): 12.4 mi./20 km range
37 mi./60 km range |

Note: Distances equated using industry standard fiber and connector attenuation. Fiber condition, splices, and connectors may affect actual range.

System Accuracy

| 4~20mA Models | 99.9%
0~10VDC Models | 99.9% |

Note: Accuracy for Complete Fiber Link System, Both Transmitter & Receiver at 25°C and powered by 24VDC

Ambient Temp Effect:
Approximately 0.2% over operational range

Update Rate:
12.8μs (78,000 updates per second)

Signal Resolution:
16 Bits

Sensitivity:
$2^{\times}16 (65,536)$ Steps

Analog Signal

<table>
<thead>
<tr>
<th>Analog Input 1~4</th>
<th>4~20mA System</th>
<th>0~10VDC System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Range:</td>
<td>0-20mA(AC)</td>
<td>0 - 10VDC</td>
</tr>
<tr>
<td>Impedance:</td>
<td>250 Ohms</td>
<td>200K Ohms</td>
</tr>
<tr>
<td>Protection:</td>
<td>24mA</td>
<td>24VDC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analog Output 1~4</th>
<th>23.7VDC</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Voltage:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Loop Resistance:</td>
<td>1000 Ohms</td>
<td>1000 Ohms</td>
</tr>
<tr>
<td>Maximum Output Signal (mA/VDC):</td>
<td>24mA</td>
<td>10.5VDC</td>
</tr>
</tbody>
</table>

Power Requirements
24 - 48VDC
Transmitter - 8 Watts Max.
Dual redundant power inputs
Receiver - 10 Watts Max.

Wire Connector
Screw clamp terminal blocks, 16 - 26 AWG

DC Input Isolation
1.5KV

Surge Protection
PTC thermistors, zener diodes and varistors

Over Current Protection
0.5A (Automatic Recovery)

Operating Temperature
-40° to +158° F (-40° to +70° C), 95% non-condensing

Dimensions
H4.93” x W1.2” x D3.5” (100mm x 31mm x 89mm) - Not including connectors

WARRANTY
Limited Lifetime
Visit www.fiberopticlink.com for warranty details
Ordering Information

Each 4 Channel 4~20mA or 0~10VDC Analog Signal DIN Fiber Link unit is identified with a part number.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Connector</th>
<th>Distance</th>
<th>Fibers</th>
<th>Description</th>
<th>System Part Numbers 4~20mA</th>
<th>0~10VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimode</td>
<td>SC</td>
<td>2km / 1.2 mi</td>
<td>Dual Fiber</td>
<td>Transmitter</td>
<td>ADH-420TX-03-1</td>
<td>ADH-010TX-03-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Receiver</td>
<td>ADH-420RX-03-1</td>
<td>ADH-010RX-03-1</td>
</tr>
<tr>
<td></td>
<td>ST</td>
<td>2km / 1.2 mi</td>
<td>Dual Fiber</td>
<td>Transmitter</td>
<td>ADH-420TX-04-1</td>
<td>ADH-010TX-04-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Receiver</td>
<td>ADH-420RX-04-1</td>
<td>ADH-010RX-04-1</td>
</tr>
<tr>
<td>Single-mode</td>
<td>SC</td>
<td>20km / 12.4 mi</td>
<td>Dual Fiber</td>
<td>Transmitter</td>
<td>ADH-420TX-40-1</td>
<td>ADH-010TX-40-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Receiver</td>
<td>ADH-420RX-40-1</td>
<td>ADH-010RX-40-1</td>
</tr>
<tr>
<td></td>
<td>ST</td>
<td>60km / 37 mi.</td>
<td>Dual Fiber</td>
<td>Transmitter</td>
<td>ADH-420TX-41-1</td>
<td>ADH-010TX-41-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Receiver</td>
<td>ADH-420RX-41-1</td>
<td>ADH-010RX-41-1</td>
</tr>
<tr>
<td></td>
<td>SC</td>
<td>120km / 74 mi.</td>
<td>Dual Fiber</td>
<td>Transmitter</td>
<td>ADH-420TX-45-1</td>
<td>ADH-010TX-45-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Receiver</td>
<td>ADH-420RX-45-1</td>
<td>ADH-010RX-45-1</td>
</tr>
<tr>
<td>Single-mode</td>
<td>SC</td>
<td>20km / 12.4 mi</td>
<td>Dual Fiber</td>
<td>Transmitter</td>
<td>ADH-420TX-50-1</td>
<td>ADH-010TX-50-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Receiver</td>
<td>ADH-420RX-50-1</td>
<td>ADH-010RX-50-1</td>
</tr>
<tr>
<td></td>
<td>ST</td>
<td>60km / 37 mi.</td>
<td>Dual Fiber</td>
<td>Transmitter</td>
<td>ADH-420TX-51-1</td>
<td>ADH-010TX-51-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Receiver</td>
<td>ADH-420RX-51-1</td>
<td>ADH-010RX-51-1</td>
</tr>
<tr>
<td></td>
<td>SC</td>
<td>120km / 74 mi.</td>
<td>Dual Fiber</td>
<td>Transmitter</td>
<td>ADH-420TX-55-1</td>
<td>ADH-010TX-55-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Receiver</td>
<td>ADH-420RX-55-1</td>
<td>ADH-010RX-55-1</td>
</tr>
<tr>
<td></td>
<td>ST</td>
<td>20km / 12.4 mi</td>
<td>Single Fiber</td>
<td>Transmitter</td>
<td>ADH-420TX-10-1</td>
<td>ADH-010TX-10-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Receiver</td>
<td>ADH-420RX-11-1</td>
<td>ADH-010RX-11-1</td>
</tr>
<tr>
<td></td>
<td>SC</td>
<td>60km / 37 mi.</td>
<td>Single Fiber</td>
<td>Transmitter</td>
<td>ADH-420TX-14-1</td>
<td>ADH-010TX-14-1</td>
</tr>
</tbody>
</table>

- A complete system requires a **Transmitter** and a **Receiver**
- Single Fiber Systems: The transmitter is always **Side A** (T-1310/R-1550), the receiver is always **Side B** (T-1550/R-1310)
- Multimode systems are compatible with both 62.5µm & 50µm fiber cable

RLH Industries, Inc.
936 N. Main Street, Orange, CA 92867 USA
T: (714) 532-1672
F: (714) 532-1885

Please contact your RLH sales representative for pricing and delivery information.

Specifications subject to change without notice.